Improved Analysis of Kannan’s Shortest Lattice
نویسندگان
چکیده
Abstract. The security of lattice-based cryptosystems such as NTRU, GGH and Ajtai-Dwork essentially relies upon the intractability of computing a shortest non-zero lattice vector and a closest lattice vector to a given target vector in high dimensions. The best algorithms for these tasks are due to Kannan, and, though remarkably simple, their complexity estimates have not been improved since over twenty years. Kannan’s algorithm for solving the shortest vector problem (SVP) is in particular crucial in Schnorr’s celebrated block reduction algorithm, on which rely the best known generic attacks against the lattice-based encryption schemes mentioned above. In this paper we improve the complexity upper-bounds of Kannan’s algorithms. The analysis provides new insight on the practical cost of solving SVP, and helps progressing towards providing meaningful key-sizes.
منابع مشابه
A Complete Worst-case Analysis of Kannan’s Shortest Lattice Vector Algorithm
Computing a shortest nonzero vector of a given euclidean lattice and computing a closest lattice vector to a given target are pervasive problems in computer science, computational mathematics and communication theory. The classical algorithms for these tasks were invented by Ravi Kannan in 1983 and, though remarkably simple to establish, their complexity bounds have not been improved for almost...
متن کاملImproved Analysis of Kannan's Shortest Lattice Vector Algorithm
The security of lattice-based cryptosystems such as NTRU, GGH and Ajtai-Dwork essentially relies upon the intractability of computing a shortest non-zero lattice vector and a closest lattice vector to a given target vector in high dimensions. The best algorithms for these tasks are due to Kannan, and, though remarkably simple, their complexity estimates have not been improved since more than tw...
متن کاملImproved Analysis of Kannan ’ s Shortest Lattice Vector Algorithm ( Extended Abstract )
Abstract. The security of lattice-based cryptosystems such as NTRU, GGH and Ajtai-Dwork essentially relies upon the intractability of computing a shortest non-zero lattice vector and a closest lattice vector to a given target vector in high dimensions. The best algorithms for these tasks are due to Kannan, and, though remarkably simple, their complexity estimates have not been improved since ov...
متن کاملImproved Reduction from the Bounded Distance Decoding Problem to the Unique Shortest Vector Problem in Lattices
We present a probabilistic polynomial-time reduction from the lattice Bounded Distance Decoding (BDD) problem with parameter 1/( √ 2 · γ) to the unique Shortest Vector Problem (uSVP) with parameter γ for any γ > 1 that is polynomial in the lattice dimension n. It improves the BDD to uSVP reductions of [Lyubashevsky and Micciancio, CRYPTO, 2009] and [Liu, Wang, Xu and Zheng, Inf. Process. Lett.,...
متن کاملWorst-Case Hermite-Korkine-Zolotarev Reduced Lattice Bases
The Hermite-Korkine-Zolotarev reduction plays a central role in strong lattice reduction algorithms. By building upon a technique introduced by Ajtai, we show the existence of Hermite-Korkine-Zolotarev reduced bases that are arguably least reduced. We prove that for such bases, Kannan’s algorithm solving the shortest lattice vector problem requires d d 2e (1+o(1)) bit operations in dimension d....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010